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The intense line in Mims and Davies electron-nuclear double res-
onance (ENDOR) spectra due to the hyperfine interactions of an
unpaired electron with distant matrix nuclei is shown to originate
from a simultaneous inversion of a large number of nuclear spins by
a radiofrequency pulse. Theoretical expressions describing the matrix
ENDOR effect are derived and verified experimentally. © 1998 Academic

Press
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INTRODUCTION

There are two basic techniques of pulsed electron-nuclear
double resonance (ENDOR) spectroscopy, one due to Mims
(1) and the other due to Davies (2), that are used most often in
practical applications. Both techniques have been described in
detail in several theoretical (3, 4) and review works (5–8).
Their common feature is that the ENDOR effect, according to
the available theory, becomes smaller for smaller hyperfine
interaction (hfi) constants. Nevertheless, in the ENDOR spectra
obtained by both methods, quite frequently, the most intense
line is that due to the distant matrix protons, that is, nuclei with
extremely small hfi (for the examples see (5–13)). To our
knowledge, so far no satisfactory explanation of this fact has
been given in the literature and the above theoretical and
review works (3–8) do not discuss this matter in detail. An
analysis given in this work allows one to reconcile the high
intensity of the matrix line with the mentioned property of the
Mims and Davies ENDOR techniques consisting in the de-
crease of the ENDOR response with decreasing hfi constant.

EXPERIMENTAL

The pulsed ENDOR measurements were performed on a
pulsed EPR spectrometer ESP-380 (Bruker) equipped with a
cylindrical dielectric ENDOR cavity (EN4118X-MD5, Bruker)
and a cryogenic gas flow system. The radiofrequency (RF)
pulse was supplied through the 500-W amplifier (ENI model

500A). The durations of the 90° microwave (mw) pulses in the
Mims ENDOR experiment were 16 ns. The measurement
temperature was 80 K.

In the Davies ENDOR measurement, the duration of the first
(180°) mw pulse was 800 ns. The detection sequence consisted
of two non-selective 90° and 180° mw pulses with the dura-
tions of 16 and 24 ns, respectively. The measurement temper-
ature was 30 K.

RESULTS AND DISCUSSION

1. General Assumptions and Approach to the Analysis

We will assume an unpaired electron with a spinS 5 1
2

to
interact with nuclei of spinI 5 1

2
, which corresponds to the most

practical case of proton ENDOR. The static magnetic fieldBo is
assumed to be parallel to the Z-axis of a laboratory frame and the
Hamiltonian of the spin system is taken in the form

Ĥ 5 veŜZ 2 v IÎZ 1 AŜZÎZ, [1]

whereve 5 gebeBo/h ( ge is an electron g-factor andbe is Bohr
magneton) is a Larmor frequency of the electron in the applied
magnetic field,vI 5 gNbNBo/h ( gN is a nuclear g-factor and
bN is a nuclear magneton) is a nuclear Zeeman frequency, and
A is a secular part of hfi,

A 5 aiso 1 D. [2]

In the last expressionaiso is an isotropic hfi constant andD is
an electron-nuclear dipole interaction (anisotropic hfi). In the
point dipole approximation that we will use for distant matrix
nuclei, the dependence ofD on the distanceR between the
unpaired electron and a nucleus and on the angleu betweenBo

andR is given by

D 5 Do@1 2 3 cos2u# [3]

with

Do 5 gegNbebN/hR3. [4]
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All non-secular terms in Eq. [1] are neglected. This represents
a fair approximation for a usual situation of |Do| , |2vI 6 A|
and |A| ! |ve|.

Our analysis will take into account the interaction of the
unpaired electron with many equivalent nuclei simultaneously.
Therefore, we could start our consideration of the Mims
ENDOR effect directly from the analytical expression derived
for such a situation by Liao and Hartmann (3). However, we
have found it beneficial to use a classical model considering an
effect of the local magnetic field produced by the nuclear spins
on the precession of the electron spin and a resonance fre-
quency of its transitions. Under our assumption about the
absence of non-secular terms in the spin-Hamiltonian (Eq. [1])
this simple approach is as rigorous as the density matrix one
used in (3) (and leads, of course, to the same results), but it
seems to be more transparent for the qualitative understanding
of the physics of the phenomena.

Throughout the discussion, the electron spin relaxation is
considered to be independent of the RF-induced changes in a
nuclear spin system and is not taken into account explicitly.
Thus, the ESE signals are always assumed to be normalized by
the relaxation decay.

2. The Origin and General Properties of Mims ENDOR
Effect

The pulsed ENDOR technique proposed by Mims (1) is
based on the stimulated ESE sequence (see Fig. 1a). To un-
derstand qualitatively the origin of the ENDOR effect in this
technique, we have to consider the precession of the electron
spins in a coordinate frame (XYZ) rotating around axis Z //Bo

with the frequency equal to the carrier frequency of the mw
pulses. Axis X of this frame is parallel to the mw fieldB1 and
axis Y is perpendicular to X and Z. For simplicity, we will

consider all the mw pulses to have the rotation angles of 90° in
a clockwise direction.

The first two mw pulses separated by the time intervalt
create a distribution of the Z-magnetization (so-called popula-
tion (or absorption) grating (5, 7)) proportional to2cos(2pvt),
wherev is a spin offset from the resonance in frequency units.
The third mw pulse applied in timeT after the second one
transfers this Z-magnetization pattern into the XY plane. The
Y-magnetization,MY, associated with every spin isochromate
then evolves in proportion with2cos(2pvt) z cos(2pvt), where
t is a time interval after the third mw pulse. The latter expression
can be written as

MY } 2cos@2pv~t 2 t!# 2 cos@2pv~t 1 t!#. [5]

The macroscopic value of the Y-magnetization,^MY&, is ob-
tained by averaging Eq. [5] overv. The second term in Eq. [5]
describes an FID signal. For a distribution ofv broader than 1/t
(the situation typical for ESE experiments with paramagnetic
centers stabilized in solid matrices) its contribution to^MY& is
negligible.

The first term in Eq. [5] is also about zero for anyt signif-
icantly differing fromt. For t close tot, however, it becomes
essentially independent ofv and the averaging giveŝMY& 5
21 implying a convergence of the electron spins along2Y and
a formation of the stimulated ESE signal with an amplitudeV
that attains its maximum att 5 t.

Let us consider what happens if an RF pulse is introduced
between the second and third mw pulses. The RF pulse is
assumed to have a flip angle of 180° (which corresponds to a
maximum ENDOR effect (3)) and to be in resonance with a
transition of a magnetic nucleus (I 5 1

2
) coupled to the

ESE-forming electron spins with a hfi constantA. the RF-
induced change of the nuclear spin projection leads to the
change of the electron spin precession frequency fromv to v9
5 v 6 A. Now for the Y-magnetization after the third mw
pulse we have to write

MY } 2cos@2pvt#cos@2p~v 6 A!t#

}2cos@2pv~t 2 t! 6 2pAt#

2cos@2pv~t 1 t! 6 2pAt# [6]

and the amplitude of the stimulated ESE signal att 5 t
obtained by averaging Eq. [6] overv is given by

V } cos~2pAt!. [7]

The change of the stimulated ESE signal amplitude described
by Eq. [7] represents the ENDOR effect.

We have assumed above that each electron spin contributing to
the ESE signal is coupled to a nuclear spin affected by the RF
pulse. If the RF pulse inverts the nuclear spins coupled to only a

FIG. 1. The pulse sequences of Mims (a) and Davies (b) ENDOR.
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fraction p # 1 of the electron spins, the ESE signal will be
contributed by the electron spins coupled to the nuclear spins
inverted by the RF pulse (statistic weightp) and those coupled to
the nuclear spins unaffected by the RF pulse (statistic weight
(1 2 p)). The sum of these two contributions gives

V } ~1 2 p! 1 p cos~2pAt! 5 1 2 p@1 2 cos~2pAt!#.

[8]

A very important source ofp , 1 is related to the fact that the
whole electron spin ensemble may be described as a coherent
superposition of the electron spins with the projectionsmS 5 1

2
and 21

2
. The transition frequencies of the nuclei coupled to

these electron spin manifolds are different (vI 2 A/ 2 andvI 1
A/ 2 for a nucleus withI 5 1

2
coupled to the electron spins with

mS 5 1
2

and21
2
, respectively). In an experiment, usually only

the nuclei with one of these frequencies are inverted by the RF
pulse thus leading to a maximum value ofp 5 1

2
even for

narrow isotropic nuclear transitions. Further decrease of the
p-value may arise for broad ENDOR lines, e.g., due to the
anisotropy of a hyperfine interaction in solid matrices.

To separate the two sources of the incomplete nuclear spin
inversion, we may split the factorp into two terms,p1 andp2,
corresponding to the nuclei coupled after the second mw pulse
to the electron spins withmS 5 1

2
and21

2
, respectively. For a

180° RF pulse, the valuesp6 #
1
2

are determined by the hfi
anisotropy. The hfi constants corresponding to these nuclear
spin populations will also be written separately asA1 andA2,
even if they are usually the same and equal toA. The final
expression for the stimulated ESE amplitude then becomes

V 5 1/ 2@V1 1 V2# } 1/ 2~1 2 2p1@1 2 cos~2pA1t!#

1 1 2 2p2@1 2 cos~2pA2t!#!, [9]

whereV1 and V2 are the contributions of the electron spin
subensembles that, after the second mw pulse, have the pro-
jections of1

2
and21

2
, respectively. These values will be referred

to as the fractional ESE amplitudes. For well-separated
ENDOR lines, like those arising due toa- or b-protons in
aromatic organic radicals, one of thep-values, p1 or p2,
equals zero and the valuesA1 and A2 are equal if only one
radiofrequency is used to invert the nuclear spins.

Equations [8], [9] reproduce a well-known result (1, 3–8)
that the ENDOR spectrum amplitude is modulated with a
period 1/t, giving a maximum effect at the hfi valuesA 5 6[ 1

2
1 n]/t (wheren $ 0 is an integer number) and blind spots at
A 5 6n/t. An undistorted spectrum can be obtained as a sum
of the spectra recorded at severalt values. Another obvious
technique is to maket as short as possible, so that the first
blind spot is outside the spectrum range of interest. In this case,
if t is shorter than the spectrometer dead time,td, one may
introduce a fourth (180°) mw pulse in timet9 . td after the
stimulated ESE signal in order to refocus it and make it observ-

able. To our knowledge, this technique was first used in (14).
Later it was described in detail in (15), where it was called
refocused Mims (ReMims) ENDOR. However, as follows from
Eqs. [8], [9], the ENDOR effect becomes small for shortt values,
which represents a disadvantage of this technique.

As one can see from Eqs. [8], [9], the ENDOR effect in a
spectrum recorded at anyt value should tend to zero for small
hfi constantsA. However, very often a most prominent feature
in the experimental Mims ENDOR spectra of paramagnetic
centers stabilized in matrices containing many hydrogen nuclei
is a peak at the Zeeman frequency of protons (see, e.g., Fig.
3a). As mentioned in the Introduction, no satisfactory expla-
nation of this seeming discrepancy between the theory and an
experiment has been given in the literature.

Before considering the origin of the matrix line, we have to
mention some general properties of the Mims ENDOR spec-
trum. If several nuclei contribute to the same region of the
ENDOR spectrum but they are coupled to different electron
spins, a simultaneous inversion of these nuclear spins results in
an increase of thep-values in Eqs. [8], [9] as given byp 5 ( j

pj. The ENDOR effect in this case is additive with respect to
the nuclear contributions.

On the other hand, if several nuclei interact with the same
electron, the change of the local magnetic field for the electron is
additive with respect to the contributions of separate nuclei,A 5
(j cjAj, where the factorscj are equal to 1 or21, depending on the
sign of the change of the spin projection of thejth nucleus in an
RF-induced transition. There will be no increase in thep-values in
this case and the ENDOR effect will not change in amplitude, but
its dependence ont will show a distribution of the oscillation
frequencies corresponding to the distribution ofcj values. At a
high temperature (hvI ! kT, whereT is temperature andk is a
Boltzmann constant) the latter distribution is binomial and the
fractional ESE amplitudes are obviously expressed in a compact
way asV6 5 )j Vj

6 as it is also obtained from the density matrix
considerations (3).

We also have to discuss an important difference between the
distant matrix nuclei and the nuclei situated in a close vicinity
of the unpaired electron. In the latter case, the number of nuclei
is relatively small and they are usually arranged in a regular
manner with respect to the molecular coordinate frame. If the
hyperfine interactions of these nuclei are anisotropic, the total
spectra of their transitions at different orientations of the mo-
lecular frame will generally be different. Thus, by applying an
RF irradiation in resonance with any particular region in the
spectrum of the nuclear transitions, we will change the local
magnetic fields for only a fraction (p , 1 in Eq. [8] orp1 ,
1
2
, p2 , 1

2
in Eq. [9]) of the electrons contributing to the ESE

signal.
The spatial arrangement of the distant matrix nuclei, on the

other hand, is approximately uniform and isotropic and the
nuclear transition spectrum does not depend on the orientation
of the molecular frame. The RF irradiation applied to any part
of the spectrum of these nuclei will change the local field for
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all the unpaired electrons. By definition, this meansp 5 1 in
Eq. [8] andp1 5 p2 5 1

2
in Eq. [9]. Thus, for the distant

matrix nuclei it is appropriate to write

V 5 1/ 2@V1 1 V2# } 1/ 2@cos~2pA1t! 1 cos~2pA2t!#.

[10]

3. Matrix Line in Mims ENDOR

To explain the “anomalous” intensity of the matrix line we
have to take into account a large number of distant matrix
nuclei. A 180° RF pulse inverts the orientations of all the
resonant nuclei. The effect of this inversion on the local mag-
netic field and precession frequency of the unpaired electron is
additive, Dv 5 DMID, whereDMI is a change of the total
nuclear spin projection. The average numbers of matrix nuclei
coupled with an anisotropic hfi constantD to the unpaired
electrons withmS 5 1

2
and21

2
will be denoted byN1 andN2,

respectively. These nuclei may have different spin projections
mI. We will call a given realization of the nuclear spin projec-
tions in an ensemble ofN6 nuclei a nuclear spin configuration.
The total spin projectionMI for a given nuclear spin configu-
ration is a sum of the spin projections of individual nuclei.

In a high temperature approximation (hvI ! kT) all nuclear
spin configurations are realized with equal probabilities. This
leads to the binomial distribution ofMI with a probability
P6(MI),

P6~M I! 5 ~1/ 2N6)N6!/n! ~N6 2 n!!, [11]

where 0# n # N6 is the number of nuclei withmI 5 1
2
. For

largeN6 this distribution tends to the Gaussian one:

P6~MI! 5 ~2/pN6!1/ 2exp@22~n 2 N6/ 2!2/N6#. [12]

The total nuclear spin projection enters Eqs. [11], [12] implic-
itly as MI 5 n 2 N6/ 2. The change ofMI, DMI 5 2MI 5
2n 2 N6, is thus weighted with the factorP6(MI) and the
ESE signal is calculated as a sum over various nuclear spin
configurations,

V 5 1/2@V1 1 V2# } 1/2@OnP1~MI!cos@2p~2n 2 N1!Dt#

1 On P2~MI!cos@2p~2n 2 N2!Dt##. [13]

The oscillating terms in Eq. [13] represent the expansions of
P6(MI) into a cosine Fourier series. Using Eq. [12], one can
find that for large enoughN6 the dependence of the stimulated
ESE signal ont will be described by a sum of Gaussian
functions:

V 5 1/ 2@V1 1 V2# } 1/ 2@exp~22p2N1D2t2!

1 exp~22p2N2D2t2!#. [14]

With increasingt, the ESE amplitude tends to zero. This
explains the appearance of an intense matrix line in the Mims
ENDOR spectra.

Let us estimate the number of nucleiN6 that have dipole
interactions in the range fromD 2 DD to D 1 DD (DD !
D). The non-zero width of the RF excitation, 2DD, is con-
tributed by two factors. The less significant one is a homoge-
neous broadening of the proton transitions that might be of the
order of several kilohertz. The second (and, usually, much
more significant) factor is related to the finite RF pulse width.
We will assume for certainty that the carrier frequency of the
RF pulse,vrf, is greater thanvI. This means that in order to be
in resonance with the RF pulse, the nuclei coupled to themS 5
1
2

and 21
2

electron spin manifolds should have negative and
positive signs of the dipole interaction, respectively.

For any given distanceR from the unpaired electron, the
nuclei are in resonance with the RF pulse if they are located at
the anglesu satisfying the condition

Do@123 cos2u# 5 D res, [15]

whereDres[ [D 2 DD, D 1 DD]. Using Eq. [15], it is easy
to find a maximum value of the distance,Rmax, at which the
nuclei still can be in resonance. Substitutingu 5 0° (or u 5
180°) into Eq. [15] we can find for the nuclei coupled to themS

5 21
2

electron spin manifold

Rmax 5 u2gegNbebN/hDresu1/3. [16]

For the nuclei coupled tomS 5 1
2
, after substitutingu 5 90°

into Eq. [15], we find

Rmax 5 ugegNbebN/hDresu1/3. [17]

The number of resonant nuclei is then calculated as

N6 5 4prFE
0

Rout

R2dRE
umin

umax

sinudu 2 E
0

Rinn

R2dRE
umin

umax

sinuduG,
[18]

wherer is a density of nuclei in a sample.Rout andRinn are the
Rmax values for Dres 5 D 2 DD and Dres 5 D 1 DD,
respectively. The anglesumin for N2 andumax for N1 are equal
to 0° and 90°, respectively. The anglesumax for N2 andumin

for N1 are expressed in terms ofR using Eq. [15]. The factor
of 4p, instead of 2p, in front of the integrals takes into account
the fact that the anglesu in Eq. [18] do not exceed 90°. The
integration gives

N1 5 N2 5 @16/2431/ 2#prgegNbebNDD/@h~D2 2 DD2!#. [19]
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As DD is assumed to be much less thanD and the numerical
factor in the expression forN6 is close to unity (about 1.03),
Eq. [19] may be reduced to

N6 < prgegNbebNDD/hD2 [20]

which finally results in

V } exp~22p3rgegNbebNDDt2/h! 5 exp~2t2/ 2tdec
2 !, @21#

where

tdec5 @h/~4p3rgegNbebNDD!#1/ 2. [22]

One can see that, as long asD @ DD, the power of the
exponent in Eq. [21] does not depend onD and is linear with
respect toDD. If we split DD into a sequence of smaller
intervalsdDk, so thatDD 5 ¥k dDk, we will see thatV6 5
)k Vk

6 and the distribution of the dipole interactions associated
with the regionDD is a convolution of the distributions asso-
ciated withdDk. This is a natural consequence of the statistical
independence of nuclear subensembles corresponding to dif-
ferentdD.

For small values ofD our approach based on the assumption
of D @ DD and, correspondingly, a very small relative vari-
ation of the dipole interaction within the range of the RF
excitation becomes inapplicable. In particular, it is not appli-
cable directly to the case ofvrf 5 vI (D 5 0). To include this
situation into our analysis, we have to note that in practice the
width of the matrix lineDvm is always finite and theDD value
may always be chosen much smaller thanDvm. We can show
that under these conditions the ESE dependence ont for the
case ofD 5 0 is also expressed by Eq. [21]. For this, we can
split the excited region of the dipole interactions from 0 toDD
(for the region from2DD to 0 similar considerations apply)
into an infinite sequence of regions with the widths of 2dDk

and centralD-values of Dk, so that DD 5 2¥k dDk and
dDk/Dk 5 r ! 1, wherer is a positive constant. The values
Dk are expressed as

Dk 5 DD~1 2 r !k21/~1 1 r !k [23]

and tend to zero with increasingk. At this point our discussion
is still purely theoretical and we have a freedom in the choice
of DD. From Eqs. [19], [20] it follows that for anyr ! 1 we
can always selectDD to be small enough to ensure that the
number of nuclei contributing into the outmost intervaldD1 is
sufficiently large to provide for the validity of the Gaussian
approximation. The number of nuclei contributing into the
intervaldDk becomes greater with increasingk (see Eqs. [19],
[20]), so that the Gaussian approximation (Eq. [12]) remains
valid for everyk, as well as Eq. [21], where we have to write
dDk on place ofDD. Taking products of the ESE decays as

given by V6 5 )k Vk
6 (where theVk

6 are the Gaussian
functions) is equivalent to the summation of the infinite geo-
metric progressions ofdDk 5 rDk for the intervals from6DD
to 0 in the power of the exponent, and finally results in Eq.
[21]. The above considerations prove that, at least for small
enoughDD values (as compared with the matrix linewidth),
the dependence of the stimulated ESE signal ont is described
by a Gaussian function given by Eq. [21]. The question as to
what DD may be considered small enough for any practical
situation (including the choice of the nuclear densityr) is,
however, to be answered by means of numerical calculations
that will be discussed below.

By substituting A 5 (2n 2 N6) D into Eq. [12] and
renormalizing it to a unity integral or by Fourier-transforming
Eq. [21] we can find the distribution of the local fieldsA
associated with the nuclear spins inverted by the selective RF
pulse:

P~ A! 5 ~2/pAo
2!1/ 2exp@22A2/Ao

2#. [24]

The widthAo of this distribution equals

Ao 5 2~prgegNbebNDD/h!1/ 2. [25]

The above analysis explains the matrix ENDOR effect and
its dependence on parameters related to the experimental con-
ditions (DD, t) and sample properties (r). There are, however,
several limitations and corrections that have to be mentioned.

The matrix nuclei (e.g., protons) are distributed around the
unpaired electron starting from some minimal distanceRmin

that in many cases may be estimated asRmin ' 2 4 4 Å (see
(16) and references therein). For weak dipole interactions, the
assumption ofRmin 5 0 made above does not change signif-
icantly the estimate ofN6. However, at theD-values close to
those corresponding toRmin, the number of nuclei becomes
small thus making the Gaussian distribution (Eq. [12]) used in
the analysis inapplicable. The averaging of the electron spin
precession frequencies in Eq. [13] in this case becomes incom-
plete and, instead of the Gaussian damping of the ESE inten-
sity, oscillations might appear.

As a result of the failure of the Gaussian approximation for
short distances, our analysis cannot be extrapolated to the case
of a non-selective RF excitation of all the matrix nuclei. It is
well known that in the latter case the local field distribution is
close to Lorentzian (17) and, consequently, the ESE decay is
close to exponential, as demonstrated by pulsed electron–
electron double resonance (ELDOR) (18) and “2 1 1” ESE
(19) experiments that are ideologically similar to the Mims
ENDOR (in the ESE ELDOR and “21 1” experiments two
electron subensembles are considered, one of which plays the
same role as the nuclear ensemble in ENDOR). However, we
will show below by means of direct numerical simulations that
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both types of ESE decays, Gaussian and exponential, can be
realized depending on the RF excitation range.

In our treatment we have assumed a uniform inversion of the
nuclear spins by the RF pulse within a frequency region cor-
responding to the range of the dipole coupling values of 2DD.
In reality, however, the nuclear spin inversion is not uniform.
Using a density matrix formalism, one can easily derive that
after an RF pulse of the durationtrf the nuclear spin projection
on Bo is described by the expression

MZ~Dv! 5 1 2 2~v2
2/vN

2 !sin2~pvNt rf!, [26]

whereDv is an offset of the nuclear spin from resonance,v2 5
gNbNB2/h is an RF field intensity, andvN 5 (v2

2 1 Dv2)1/ 2 is
a nutation frequency of the nuclear spins during the RF pulse.
The second term in this expression (without the numerical
factor of 2) represents a probability to invert a nuclear spin at
a given offset from the resonance. In effect, this term decreases
the density of nuclear spins at large offsets from the resonance.
Taking into account the realistic excitation profile of the RF
pulse analytically represents a formidable problem. However,
Eq. [26] is readily incorporated into the numerical simulations
that will be discussed in the next section.

4. Numerical Calculations of the Matrix
Mims ENDOR Effect

The purpose of the numerical simulations that we perform in
this section is to calculate the dependences of the matrix Mims
ENDOR effect ont for various values of the RF excitation
rangeDD and to see how far the limits of the applicability of
Eq. [21] really extend. Another purpose of the calculations is to
elucidate the effect of the realistic RF excitation profile given
by Eq. [26].

In the calculations we will assume the RF pulse to be exactly
in resonance with the nuclear Zeeman frequency (D 5 0). The
nuclear ensemble will consist of protons uniformly distributed
with a densityr of 0.05 Å23, which represents a fair order-of-
magnitude approximation for many organic and inorganic sub-
stances. The strategy of the calculation is, the same as in our
theoretical treatment above, to splitDD into a series of smaller
intervalsDk 6 dDk (see Eq. [23]), find for themNk6 using Eq.
[19], and calculate the ESE signal asV6 5 )k Vk

6, where the
Vk

6 are the ESE signals for everydDk described by Eq. [13].
There is a difficulty in this approach related to the fact that

the estimated number of nucleiNk6 may be non-integer and,
for largeDk and/or very smalldDk values, it may even be less
than unity. The binomial distributions (Eq. [12]) expressed
through the factorials of integer numbers then become inap-
plicable. Though one can possibly overcome this difficulty by
substituting the factorials byG-functions, we have chosen a
different approach which appears to be more physical and more
easily justifiable. We postulate thatNk6 found using Eq. [19]
is, actually, anaverage(over various realizations of nuclear

arrangements around all the unpaired electrons in the system)
number of nuclei with a dipole interaction in the intervalDk 6
dDk. For given Nk6, the probabilityp(m, Nk6) to find m
nuclei satisfying the same condition for the dipole interaction
in vicinity of the unpaired electron may then be estimated as
given by Eq. [A3] (see Appendix).

Thus, at thekth step of the calculation, we estimateNk6

from the values ofDk (see Eq. [23]) anddDk 5 rDk, where
r ! 1 is a positive constant (a typical value ofr used in the
calculation was 0.025, though the final result of the calculation
did not depend onr ). The ESE signals for variousm are
calculated using Eqs. [11]–[13] withN6 being substituted by
m, andD substituted byDk. Then these signals are summed
(because differentm correspond to different electrons) with
statistic weightsp(m, Nk6) to obtain the total dependences
Vk

6(t) for the given dipole interaction interval. The indexk in
the calculation is incremented untilDk becomes smaller than
1026 MHz. The product ofVk

6(t) for all intervals finally
results in the observablet-dependence of the matrix Mims
ENDOR effect.

The results of the calculations for severalDD values are
shown in Fig. 2a. Trace 1 gives at-dependence forDD 5 1
MHz. A numerical function fitting shows that this dependence
is almost perfectly Gaussian withtdec described by Eq. [22],
the same as those calculated for smallerDD values (not
shown). Trace 2 shows at-dependence forDD 5 10 MHz
calculated as described above and dashed trace 3 is calculated

FIG. 2. (a) The dependences of the stimulated ESE amplitude ont
calculated as explained in the text for a uniform RF excitation withD 5 0
MHz andDD 5 1 MHz (trace 1), 10 MHz (trace 2), and 1000 MHz (trace 4).
Dashed trace 3 is calculated using Eq. [21]. (b) The dependences of the
stimulated ESE amplitude ont calculated as explained in the text for an RF
excitation profile described by Eq. [26] withv2 5 0.039 MHz andtrf 5 10
ms (trace 1) and 12.8ms (trace 2). The center of the RF resonance was atD 5
0 MHz and the dipole interaction range taken into account wasDD 5 1 MHz.
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using Eq. [21] with a direct substitution ofDD 5 10 MHz.
One can see that even forDD 5 10 MHz thet-dependence is
very closely Gaussian withtdecclose to that determined by Eq.
[22]. A further increase inDD-values leads to taking into
account a very small number of close nuclei in the calculation
and to the gradual transition of the dependence to the expo-
nential one (see trace 4 calculated forDD 5 1000 MHz), as
expected from the general considerations (see the discussion
above and Refs. (17–19)). A direct exponential fitting shows
that the characteristic decay time of the exponent is about
0.008ms in agreement with that predicted theoretically for the
case of a non-selective RF pulse (18, 19):

tdec5 2431/ 2h/~16p3rgegNbebN!. [27]

It is interesting to note that if we takeDD 5 10 MHz and
selectD1 5 8 MHz anddD1 5 2 MHz at the first calculation
step, we can estimate the number of nucleiN16 ' 0.4 (for r
5 0.05 Å23 used in our calculation). We can see that, while
the validity of the conditiondD1 ! D1 is already questionable,
the conditionN16 @ 1 is violated completely. For this par-
ticular case it is obviously impossible to choosedD1 andD1 in
such a way that the conditionsdD1 ! D1 andN16 @ 1 were
satisfied simultaneously. Still, the comparison of traces 2 and 3
in Fig. 2a shows that thet-dependence of the ESE signal is
nearly Gaussian indicating that the adverse effects of close
nuclei are only minor even for this largeDD value.

It follows from our calculations (not shown) that a decrease
in the nuclear densityr leads to a decrease of theDD values
for which the Gaussian ESE decay will still be observed. For
example, for a very practical choice ofDD 5 0.1 MHz the
ESE decay becomes noticeably non-Gaussian forr # 1024

Å23. This proton density is two orders of magnitude lower than
that normally encountered in experiments. Therefore, we ex-
pect that for the majority of practical situations a Gaussian ESE
decay will be observed in experiments.

Another important problem we will discuss is the influence
of the RF excitation profile on the ESE decays. Setting up a
pulsed ENDOR experiment usually requires the adjustment of
the RF pulse duration (trf) for a given RF amplitude (v2) in
order to achieve a maximum ENDOR effect. Integrating Eq.
[26] overDv from 2` to 1` (which is justified by the fact that
the matrix line is usually much broader than the main lobe of
the RF excitation spectrum) allows one to find that the maxi-
mum average spin inversion is achieved at the nominal flip
angleurf ' 140°. However, it is not clear in advance if the RF
pulse withtrf corresponding tourf ' 140° will also lead to a
fastest Gaussian decay and to a maximum ENDOR effect for
any givent value. Clarifying this problem also represents a
purpose of the calculations below.

In the calculations we have takentrf 5 10 ms andv2 5
0.039 MHz to provide urf ' 1408. We found that for the
matrix linewidth Dvm $ 0.5 MHz (corresponds to the mini-

mum electron-nuclear distanceRmin # 5.4 Å), the calculation
result practically did not depend onDvm. The main change of
tdec(only about 2%) was observed upon increase ofDvm from
0.5 to 1 MHz. The ESE decay calculated forDvm 5 1 MHz is
shown by trace 1 in Fig. 2b. Trace 2 in Fig. 2b was calculated
for trf 5 12.8ms (urf ' 1808) to demonstrate that, indeed, the
ENDOR effect for the matrix line attains its maximum forurf

' 1408 even taking into account its dependence ont.
In order to be able to qualitatively analyze the experimental

data on matrix ENDOR without performing each time this type
of numerical calculations, we will introduce an effective width
of a uniform RF excitation in the formDD 5 a/trf, wherea is
a phenomenological parameter. A criterion to choosea is a
coincidence of the ESE decay obtained in the calculation for a
real excitation profile with that obtained in the calculation for
a uniform excitation profile. Our calculations show that for an
RF pulse withurf ' 1408 an equivalent uniform excitation
width is DD ' 0.86/trf (a ' 0.86). Taking into account this
result, we may write for the characteristic time of the Gaussian
decay obtained with an RF pulse of the durationtrf

tdec< @htrf/~3.4p3rgegNbebN!#1/ 2. [28]

In the next section we will use this expression to estimate the
proton density from the experimental ESE decay.

5. Experimental Measurements of the Matrix Mims ENDOR
Effect

For the experimental verification of the theoretical results
obtained above we have measured the dependence of the
matrix Mims ENDOR effect ont andtrf. As an object for the
measurements we have used the radicals C•H(COOH)2 and
C•H2COOH stabilized in ag-irradiated malonic acid powder.
These radicals give overlapping EPR spectra with a dominating
doublet feature due to the hfi of thea-proton in the
C•H(COOH)2 radical (20, 21). Figure 3a shows a Mims
ENDOR spectrum obtained as follows. First, the dependences
of the stimulated ESE signal ont were recorded under the RF
irradiation with variousvrf (trf andv2 were adjusted to provide
a maximum ENDOR effect). Then these traces were normal-
ized by the dependence of the stimulated ESE signal ont
without RF irradiation. The ENDOR traces att values from
128 to 2320 ns have been summed up to give the spectrum
shown in Fig. 3a. The most prominent feature in this spectrum
is the line due to the distant matrix protons situated in a
frequency range from about 14.6 to 15 MHz, symmetrically
with respect to the proton Zeeman frequency (about 14.8 MHz
in the applied magnetic field of 348 mT).

Traces A, B, and C in Fig. 3b show the dependences of the
ESE signal ont corresponding tovrf of 15.6, 14.5, and 14.8
MHz, respectively. These frequency positions are marked in
Fig. 3a by arrows labelled with the same capital letters. One
can see a striking difference between these traces. Trace A
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corresponds to relatively strongly coupled protons and shows
an oscillation with a frequency of about 1.6 MHz, as predicted
by Eq. [8]. On the other hand, trace C corresponds to distant
matrix protons and exhibits a fast monotonous decrease of the
ESE signal intensity.

According to Eq. [21], the ESE signal intensity measured
under the RF irradiation of the matrix proton region (and
normalized by the relaxation decay) should show a Gaussian
decay with increasingt. To check this, we have performed the
measurements of the ESE decay for several RF pulse durations
(adjusted to give a maximum ENDOR effect at selected RF
power levels). Figure 4a shows the normalized experimental
ESE decays (noisy traces) and Gaussian fits to them (smooth
lines). The traces with faster decays in Fig. 4a correspond to
shorter RF pulses. One can see from comparison that, indeed,
in agreement with Eq. [21], a Gaussian function represents a
very good approximation to the experimental ESE decays
obtained under the RF pumping of the matrix proton line.

From Eq. [28],tdec is expected to be proportional to the
square root oftrf. Filled circles in Fig. 4b show the correspon-
dence between the values oftdec obtained from the Gaussian
fitting of the experimental ESE decays in Fig. 4a and the square
roots of trf values used in the experiment. The linear relation
obtained supports the validity of our analysis.

Finally, it is interesting to estimate the average densityr of
the matrix protons from the experimental data shown in Fig.
4b. Substituting into Eq. [28] the value ofgegNbebN/h ' 79
MHz z Å3 corresponding to protons, the experimental values of

trf and tdec shown in Fig. 4b, one can findr ' 0.031 Å23.
This value is in a reasonable agreement with the estimate of the
proton density in a malonic acid powder,r ' 0.037 Å23,
obtained from the molecular structure of malonic acid and its
specific weight of 1.619 g/cm3 (22).

SubstitutingDD ' 0.06 MHz (for trf 5 13 ms used to
record the ENDOR spectrum in Fig. 3a) into Eq. [20] we can
estimate the number of nucleiN6 contributing into the matrix
line atD 5 0.6 MHz to be about 1.5 andN6 ' 6 atD ' 0.3
MHz. This sets the limits of the applicability of the Gaussian
approximation in our analysis to theD-values not exceeding
0.3 MHz for the givenr andtrf. An example of the incomplete
averaging of the electron spin precession frequencies in Eq.
[13] due to a too small number of simultaneously inverted
nuclei is shown by trace B in Fig. 3b corresponding toD 5 0.6
MHz and exhibiting a damped irregular oscillation in agree-
ment with the above general considerations.

6. Matrix Line in Davies ENDOR

Let us consider briefly the matrix line in Davies ENDOR.
The pulse sequence usually employed is shown in Fig. 1b.
Same as the Mims ENDOR sequence (Fig. 1a), it consists of
three mw pulses. Now, however, these pulses are selective and
their functions are different from those in Mims ENDOR. The
first (180°) pulse inverts the electron spins in a close vicinity of
the exact resonance. One often says in this case that this pulse
burns a hole in the EPR spectrum.

FIG. 4. (a) Noisy traces, the dependences of the stimulated ESE amplitude
on t obtained under the RF pumping at the frequency of 14.8 MHz. The RF
pulse widths are 13, 25, 46, and 73ms, with the shorter RF pulses correspond-
ing to the faster decays. The dependences have been normalized by the ESE
decay obtained without the RF irradiation. Smooth lines, Gaussian fits to the
experimental traces with the characteristic decay timestdec of 225, 313, 410,
and 550 ns. (b) Filled circles, the dependence oftdecon the square root of the
RF pulse duration. Solid line, linear least squares fit to the experimental points.

FIG. 3. (a) The Mims ENDOR spectrum of the radicals in ag-irradiated
malonic acid powder (see text for detailed explanations). Arrows labeled A, B,
and C correspond to the frequencies of 15.6, 14.5, and 14.8 MHz, respectively.
(b) Traces A, B, and C, the dependences of the stimulated ESE amplitude on
t obtained under the RF pumping at the frequencies of 15.6, 14.5, and 14.8
MHz, respectively. The dependences have been normalized by the ESE decay
obtained without the RF irradiation.
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When a 180° RF pulse is applied after the first mw pulse, it
exchanges the populations between the electron-nuclear sub-
levels in resonance with the RF pulse. As a result, the original
hole decreases in amplitude and a pair of new holes appears at
the spectrum positions6A with respect to the original (central)
hole (for a detailed discussion see, e.g., (6)). The amplitudes of
the resulting holes depend on the fraction of the electron spins
coupled to the nuclei inverted by the RF pulse, i.e., on the
p-values introduced above. If we assume the amplitude of the
EPR spectrum before the first mw pulse to beE(Dve) 5 1
(Dve 5 gebeDBo/h is an offset of the electron spin from
resonance) and after the inversionE(0) 5 21, then after the
RF pulse the amplitudes of the EPR spectrum in the holes will
be

E~0! 5 21 1 2p; E~6A! 5 1 2 p. [29]

The shape of the original hole produced by a rectangular mw
pulse is described by the expression similar to Eq. [26],

E~Dve! 5 1 2 2~v1
2/vN

2 !sin2~pvNtp!, [30]

where v1 5 gebeB1/h is a mw field intensity,vN 5 (v1
2 1

Dve
2)1/2 is a nutation frequency of the electron spins during the

mw pulse, andtp is a duration of this pulse. For the first mw
pulse with a nominal flip angle of 180°, the hole shape (more
exactly, the central lobe) can be approximated by a Gaussian
function:

E~Dve! < 1 2 2 exp~2Dve
2/v1

2!. [31]

We employ here a Gaussian approximation instead of a rational
one used elsewhere (7) because it is more convenient from the
mathematical viewpoint for estimation of the matrix ENDOR
effect (see below).

After the RF pulse, the shapes of all the holes produced are
described by similar functions and the whole spectrum may be
written as

E~Dve! < 1 2 2~1 2 p!exp@2Dve
2/v1

2#

2 p exp@2~Dve 2 A!2/v1
2#

2 p exp@2~Dve 1 A!2/v1
2#. [32]

To a first approximation we may consider the ESE signalV
generated by the selective detection sequence shown in Fig. 1b
to be proportional to the amplitude of the EPR spectrum Eq.
[32] at Dve 5 0:

V < 21 1 2p~1 2 exp@2A2/v1
2#!. [33]

For A ! v1 the ESE signal is close to21 and the ENDOR
effect defined as a difference of the ESE signal with and

without RF irradiation is close to zero as noted in many
publications on Davies ENDOR (5–8). Our purpose is to show
that even in this case the ENDOR effect due to the distant
matrix nuclei is non-zero. Its origin is exactly the same as that
already discussed. That is, in the matrix region many nuclei are
resonant with the RF pulse and the change of the local mag-
netic field associated with their simultaneous inversion is es-
sentially non-zero.

As follows from our analysis of Mims ENDOR, to describe
the effect due to the distant matrix nuclei, we have to takep 5
1. The EPR hole shape in Eq. [32] atp 5 1 represents a
convolution of the original hole shape and a doublet spectrum
with a splitting of 2A. For the distant matrix nuclei inverted by
an RF pulse, the distribution ofA is described by Eq. [24].
Taking a convolution of the original EPR hole (Eq. [31]) with
the Gaussian hfi distribution (Eq. [24]) we obtain

E~Dve!

< 1 2 2 exp@22Dve
2/~ Ao

2 1 2v1
2!#/@1 1 Ao

2/~2v1
2!#1/ 2.

[34]

The amplitude of the ESE signal formed by a selective detec-
tion sequence is then approximately equal to

V 5 1 2 2/@1 1 Ao
2/~2v1

2!#1/ 2. [35]

We may estimate a realistic value ofV for protons by takingr
' 0.05 Å23 (somewhat smaller than in water and greater than
in the malonic acid),gegNbebN/h ' 79 MHz z Å3, DD ' 0.1
MHz (for an RF pulse withtrf 5 8.6 ms andurf 5 1408) and
v1 ' 5 MHz (for a 180° mw pulse of 100 ns duration). The
width of the local field distributionAo in this case is about 2.2
MHz and the value ofV is about20.8. Thus, the difference
between the ESE signal amplitude with and without the RF
irradiation makes up about 20% and is easily measurable.

This result may be compared with the ENDOR effect in a
disordered solid matrix for the nucleus withDo 5 2 MHz and
aiso large enough to ensure that the side holes do not overlap
with the central hole. The orientation of the radius-vector from
the unpaired electron to the nuclear spin inverted by the RF
pulse is taken close to perpendicular with respect toBo. For
DD ' 0.1 MHz we can easily estimate the ESE amplitudeV
after the RF pulse to be about20.88 implying an ENDOR
effect of 12%, smaller than that obtained for the matrix line. In
this calculation we have recalled thatp 5 p1 1 p2 (see
above) and have takenp1 (or p2) equal to zero, which
corresponds to the use of a single radiofrequency in an exper-
iment.

7. Experimental Measurement of the Matrix Davies ENDOR
Effect

The EPR hole broadening associated with the RF-induced
inversion of the distant nuclear spins (or any other sources)
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can be directly observed using a nonselective detection
pulse sequence (23, 24). The ESE signal formed by this
sequence may be considered to consist of two contributions,
a narrow intense signal with a positive amplitude due to
the electron spins unaffected by the selective preparation
pulse and a weak broad negative signal due to the EPR
spectrum hole. The latter signal represents a Fourier image
of the hole shape to a good accuracy. The RF-induced
inversion of the matrix nuclear spins should lead to a
broadening of the EPR spectrum hole described by Eq. [34],
which can be detected as a narrowing of the negative com-
ponent in the ESE signal.

To check the above considerations, we have done the
Davies ENDOR experiment with a non-selective detection
sequence using theg-irradiated malonic acid powder as a
sample. The mw sequence parameters have already been
described in the Experimental section. Trace 1 in Fig. 5
shows the ESE signal in the absence of the preparation
pulse. Trace 2 gives the ESE shape after the 180° prepara-
tion pulse of 800 ns duration has been applied. As discussed
above, the ESE signal in this case consists of a narrow
positive and a broad negative contributions. Trace 3 in Fig.
5 shows the ESE shape when an RF pulse withtrf 5 9 ms and
urf 5 1408 has been introduced between the preparation mw
pulse and the detection sequence. One can see that the
negative ESE component in trace 3 is considerably narrower
than that in trace 2.

To analyze the EPR hole broadening quantitatively, we
have used the procedure similar to that employed in (24).
We have separated the negative contributions into the ESE

signals by subtracting trace 1 from traces 2 and 3 in Fig. 5.
The resulting ESE signals due to the EPR spectrum hole
without and with the RF pulse are shown in Fig. 6 by traces
1 and 2, respectively. Dividing trace 2 by trace 1 in Fig. 6,
we can obtain the Fourier image of the hole broadening
function associated with the RF-induced nuclear spin inver-
sion. It is shown by trace 3 in Fig. 6 upside down for the
convenience of presentation.

It follows from Eq. [24] that the hole broadening and the
corresponding ESE shape (trace 3 in Fig. 6) should be de-
scribed by Gaussian functions. Indeed, a Gaussian function
with a width Dt ' 390 ns represents a very good fit to trace
3 in Fig. 6 (apart from the top of the signal where the residual
narrow spike is still observable). The width of the local field
distribution Ao in Eq. [24] is then equal to 2/(pDt) ' 1.63
MHz. Substituting this value into Eq. [25] we obtain the
density estimater ' 0.028 Å23, again in a qualitative agree-
ment with the actual value of 0.037 Å23.

We have seen above that, in principle, a measurement of
the ESE dependence ont in Mims ENDOR and of an EPR
hole width in Davies ENDOR enables us to estimate the
density of matrix nucleir in a sample. However, the esti-
mates ofr in a sample of ag-irradiated malonic acid done
in this work are about 20 –25% lower than the actual den-
sity. The reason for this discrepancy is obviously related to
the fact that our theoretical discussion was idealistic in some
respects. First of all, the approximation about a uniform
nuclear distribution might be not very good for relatively
close nuclei (at the distances of the order of 10 Å) in a
crystalline sample like the malonic acid powder. Besides,
the lower limit of the integration over distances in Eq. [18]

FIG. 6. Traces 1 and 2, the contributions of the EPR spectrum hole into
the ESE signals in Fig. 5 obtained by subtraction of trace 1 in Fig. 5 from traces
3 and 2 in Fig. 5, respectively. Trace 3, a Fourier image of the hole-broadening
function obtained by division of trace 1 by trace 2 (shown upside down for the
convenience of presentation). Dashed trace 4, a Gaussian fit to trace 3 with a
width between the maximum slope points of 390 ns.

FIG. 5. The ESE signals formed by a detection sequence of two mw
pulses with the durations of 16 and 24 ns in a sample ofg-irradiated malonic
acid powder. Trace 1, no preparation mw pulse and no RF pulse are applied.
Trace 2, a preparation mw pulse of 800 ns duration (180°) is applied 40ms
before the detection sequence. Trace 3, same as trace 2, but with an RF pulse
of 9 ms duration (urf 5 1408) applied between the preparation mw pulse and
the detection sequence.
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should be greater than zero, about 2– 4 Å (see (16) and the
discussion above). For simplicity and because it was not of
the primary importance, we have neglected this fact in our
analysis, but it might be partly responsible for the underes-
timation of r. An important experimental factor that can
lead to the underestimation ofr is an inhomogeneity of the
RF field in the resonator. For example, using the numerical
calculations similar to those described above we can find
that a Gaussian distribution of the RF field strength with a
half-height width equal to the sample size will lead to the
underestimation ofr of the order of 15%. Any practical
attempts to find an accurate estimate ofr should take the
above considerations into account. The purpose of this
work, however, was to explain the matrix line phenomenon
in principle rather than to obtain a perfect estimate of the
proton density in the malonic acid.

In conclusion we may note that the analysis performed in
this work shows that the finite intensity of the matrix line in the
Mims and Davies ENDOR spectra is obtained due to the action
of the RF pulse on a large number of the resonant nuclear
spins. The fundamental reason for the matrix line effect is thus
the same as that for the multiplet structure in the EPR spectra
of the unpaired electrons interacting with many nuclei simul-
taneously, i.e., the additivity of the local magnetic fields pro-
duced by different nuclei at the position of the unpaired elec-
tron.

APPENDIX

Let us consider an ensemble of the unpaired electrons and
magnetic nuclei coupled to them by a dipole interaction. The
nuclei are assumed to be distributed in space with an average
densityr, but any nucleus is assumed to have an equal prob-
ability to occupy any position in space and thus the local
nuclear densities at various coordinates may be different from
r. Let the average number of nuclei coupled to an unpaired
electron with a dipole interaction constant in the limitsDk 6
dDk be equal toNk6. Then the probability of finding around an
electronm nuclei satisfying a similar condition is obviously
given by

p~m, Nk6! 5 @N!/m! ~N 2 M!! # z @Nk6/N#m

3 @1 2 Nk6/N#N2m, [A1]

whereN @ 1 (andN @ m, Nk6) is a total number of nuclei
in the system. SubstitutingN! and (N 2 m)! by their Stirling
expansions (e.g.,N! ' (2pN)1/ 2NNexp(2N)) and taking into
account thatN1/ 2/(N 2 m)1/ 2 ' 1 we obtain

p~m, Nk6! 5 @Nk6
m ~1 2 Nk6/N!N2mexp~2m!#/

@m! ~1 2 m/N!N2m#. [A2]

Finally, taking a limit atN 3 ` results in

p~m, Nk6! < Nk6
m exp~2Nk6!/m!. [A3]

This probability distribution peaks atm 5 Nk6 and has a
half-height width of the order of 2Nk6

1/ 2 for largeNk6.
We use Eq. [A3] in the numerical calculations of the

matrix Mims ENDOR effect. A relatively small width of the
distributionp(m, Nk6) excludes from consideration the val-
ues of m too strongly differing fromNk6. Therefore, the
original (clearly not physical) assumption that any nucleus
has an equal probability to occupy any position in space and
thus any local nuclear density is allowed may not be con-
sidered as strictly prerequisite. Imposing physical restric-
tions on the local nuclear densities will limit a possible
range of them values. However, because several-fold vari-
ations ofm in real systems are quite conceivable, Eq. [A3]
is expected to hold to a good accuracy.
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